lteration-3

Team-3



Team Members

1. Keyur Patel

2. Stephanie Valentin
3. John Sapp

4. Shane Andrews

5. Pranil Maharjan



Overview

0
0

0

Requirements

Use Case Modeling

o)

0)
)

Abstract & High level Use
Cases

Expanded Use Cases
Use Case Diagrams

Domain Modeling

o)

Brainstorming &
Classification

Domain Model Class
Diagram

0

O¢ O«

O«

Object Interaction Modeling

0 Scenarios & Scenario
Table

0 Seguence Diagrams
Design Class Diagram

Correct Application & Indicate
Design Patterns

Code Coverage



Requirements (R1)

R1. The application shall allow users to login and manage their accounts based on respective roles.
R1.1. The application shall allow admin to create, edit, and delete user types and define their privileges.

R1.2. The application shall provide all levels of privileges pertaining to user account management and application management to

the admin.

R1.3. The admin shall be able to add, edit and delete advisor account.

R1.4.The admin/advisor shall be able to create, edit and delete appointment types/services and manage the appointments as well

as related fields.

R1.5.The application shall allow students create an account.

R1.5.1. The application shall allow students to register using their UTA emalil.

R1.5.2. The application shall validate the email addr essUTAan
email address.

R1.5.3. When the student login in for the first time, the application shall prompt the student to change the temporary password.

R1.5.4. The application shall allow the admin to set an expiration time for the temporary password.

R1.6.The application shall allow students to manage their respective accounts.



Requirements (R2)

R2. The application shall display views and provide features to the user based on the user role.
R2.1 The application shall provide a traditional calendar view containing day, month, year parameters to all the users.
R2.2. A list of the available times should be displayed at the same time so that a student can select a time slot of their
convenience.
R2.3. Time slots that have been reserved and time slots that are available should be distinguished on the calendar by
color and enabled or disabled to be selected appropriately.
R2.4. The application shall provide advisors features to allocate windows of time on their calendar when they are
available for appointments.
R2.5. The application shall allow advisors to view the details provided by the student while scheduling appointment.
R2.6. The application shall allow advisors/admin to add, edit, or delete staff associated with them.

R2.7. The application shall provide admin the feature to opt for / opt out of email notification



Requirements (R3)

R3. The application shall allow student to schedule an appointment.
R3.1.The application shall allow students to select the advisor and department.
R3.2. The application shall allow students to select the advising type or service they seek including a field that allows the student to
specify if it is not found on the list (advising for schedule, dropping a class, new students, etc.).
R3.3.The application shall display time slots based upon the type of appointment and other details specified by the students.
R3.4.Students shall be able to book an advisor with an available time slot by selecting the time slot in the calendar.
R3.5.The application shall send a confirmation email to the student and the advisor if the appointment was successful with a
summary of the selected appointment day (advisor name, type of service, date, and time it begins). The application notifies the
advisor only if the advisor opted for notification.
R3.6.The application shall mark the time slot booked by the student as reserved or not available.
R3.7.The application shall send a notification to the students in case of any change/cancellation of the appointment they have
already scheduled.
R3.8.The application shall allow the student to cancel a scheduled appointment. The application shall make the slot available and

update the calendar view accordingly.



Requirements (R4 & R5)

R4. Advisor can manage the appointments and related activities.

R4.1.The application shall allow advisors to edit or cancel an appointment with a reason for cancellation.
R4.1.1 On cancellation of an appointment, the appoint
as the applicationdés calendar.

R4.2.The application allows advisors to manage and update their time slots in the calendar.

R4.3. The application shall allow the advisor to manage and edit advising types.

R4.3.1. The application shall allow the advisor to choose required fields for appointment types.

R4.3.2. The application shall allow the advisor to choose the duration of appointment types.

R4.3.3. Whenever an appointment is modified or cancelled, the application shall notify all relevant parties (advisor and

student).
R5. The application shall synchronize with the advisors Microsoft Outlook.



Does it
Does accomp
it lish a
begin busines | Isita
Isita with Does it s task use
business an end with for the case
Use Case ID Verb-Noun Phrase process actor? | the actor? actor? ? Actor Subsystem
1 Login Account Yes Yes Yes Yes Yes User ASA
2 Create Advisor Yes Yes Yes Yes Yes Admin ASA
3 Delete an Advisor Yes Yes Yes Yes Yes Admin ASA
4 Edit Advisor Role Yes Yes Yes Yes Yes Admin ASA
Create Time .
5 . I Yes Yes Yes Yes Yes Advisor ASA
Avalilibility
6 Edit Time Availibility Yes Yes Yes Yes Yes Advisor ASA




Does it Does it Does it
Isita begin end with | accomplish a Isita
Use Case business with an the business task | use
ID Verb-Noun Phrase process actor? actor? for the actor? case? Actor Subsystem
7 Delete Time Availibility Yes Yes Yes Yes Yes Advisor ASA
8 Create Appointment Yes Yes Yes Yes Yes Advisor ASA
Type
9 Edit Appointment Type Yes Yes Yes Yes Yes Advisor ASA
Delete Appointment .
10 PP Yes Yes Yes Yes Yes Advisor ASA
Type
11 Create appointment Yes Yes Yes Yes Yes Student ASA
12 Cancel Appointment Yes Yes Yes Yes Yes Advisor ASA
13 Reschedule Appointment Yes Yes Yes Yes Yes Advisor ASA




Brainstorming

’
- f
{ |
Cludent N
#! AdVisar
= gonalmenl
C alenda g
i aAw » 2 u v:l.’..-
15t
. I‘ "‘k - - ’—“.
o N Y [ h
‘ «'. s R
: ” = et g ™
B o Dposwad (95 4
1g | serptarme (*
- ?

11| Timesio?
1 Notitraakan Emal
/3] Advisios bpetS)
Jeg] Depurtment (5
15 C Cadicmatio Ehlﬂé
16 Duh‘“" (=
174
(2 i 'p‘wﬁd S04
/7| Pyl oe s

o=
3 G
3? U Ser *vrcﬁ-‘a

1‘,;,;_-‘?
IV rdate

| Snadify

oF Pk s

3 of Ay bhik
g ¥ :
B

po—

N g% e

o ITrS
5 e 478
9 0

v
- ~>
-

v ¥

-

oF Spre ma

or Bk :‘/'———145

-

B

—
o S
oa ir
gl
&
EA
petet
{
et 3
~ Neomstd
5 <1 884
s 1 %
g et
et
» .

- (ala™
43 Alfets

Phov

T
._—",.,k¢
% | rorde
7 gooK
1l Cancel
1 Remere
 (Naose

enls

fire

o Badeyes

of grreid st

§} lppotmnt

ei)

ot Ackcing Bf1esomt
- i

2* Sguntv




Domain
Model

Student

StudentiD

Extends

Make Appointment with >

IdUser
Name

Email
CreatedDate
UserType
Active

Admin

Extends

Create, Edit Role, Block/Unblock

‘ Reschedule, Cancel Appointments with Staff
: @ % Class
@ & Section
° %
G S
3 %
w 2
3 7
2 T
2 it %,
= 7
< G
Appointment
IdAppointment Appointment Type Wodsliazein)
AppointmentType A
Time IdAppointmentType gmeAvamblmy
REs TypeNar_ne CreatedBy
Approved Description UpdatedBy
StudentiD Duration Enabled
StudentEmail ValidUntil
AdvisoriD CreatedBy 4
] Usé
Use Use_ 4 ¢
v Y i
Notification Calendar |
Email Views |
BodyOfMessege




High Level Use Cases

UCO01: Schedule/Create Appointment

Actor: Student Priority: 1
TUCBW the student selects available time slot from the
advising calendar.

TUCEW the student sees the confirmation page with
appointment details.

UCO02: Manage Appointment

Actor: Student, Advisor  Priority: 2

TUCBW the user clicks on the existing appointment from
the calendar.

TUCEW the user sees a message that the appointment
has been updated or deleted.

UCO03: Allocate Time Slots

Actor: Advisor Priority: 3
TUCBW the user clicks the day from the calendar view.
TUCEW the user sees the available timeslots on the
calendar.

UCO04: Manage Time Slot

Actor: Advisor Priority: 4
TUCBW the advisor clicks the existing time slot displayed
on Calendar View.

TUCEW the user sees the confirmation message.

UCO05: Create Advising Type.

Actor: Advisor,Admin Priority: 13

TUCBW the Advisor clicks on Create New Appointment
Type.

TUCEW the Advisor sees the confirmation of created
appointment type.

UCO06: Manage Advising Type.

Actor: Advisor,Admin Priority: 12

TUCBW the Admin selects an appointment type to be
edited.

TUCEW the Admin sees the confirmation of updated
appointment type.



High level Use Cases

UCOQ7: Access/Loglin to Account

Actor: Student Priority: 11

TUCBW the user inserting log in credentials on the login page of the system and click Submit button.

TUCEW the user sees O6MyAccountd page with a successful

UCO08: Create User Types

Actor: Admin Priority: 10

TUCBW the admin fills out the form with new advisor details and clicks the submit button.
TUCEW the Admin sees the confirmation of the creation of the user type.

UCO09: Manage User Types

Actor: Admin Priority: 9

TUCBW the Admin selects an user type to be edited.
TUCBW the admin sees the updated page.

UC10: Create Advisor Account

Actor: Admin Priority: 8

TUCBW the Admin fills out the form with new advisor account details and clicks the submit button.
TUCEW the Admin sees the confirmation of the creation of the advisor account.



High level Use Cases

UC11: Manage Advisor Account

Actor: Admin Priority: 7

TUCBW the Admin selects an advisor account to be edited.

TUCEW the Admin sees the confirmation of changes to advisor account.

UC12: Create Staff Account

Actor: Admin Priority: 6

TUCBW the Admin fills out the form with new staff account details and clicks the submit button.
TUCEW the Admin sees the confirmation of the creation of the staff account.

UC13: Manage Staff Account

Actor: Admin Priority: 5

TUCBW the Admin selects a staff account to be edited.

TUCEW the Admin sees the confirmation of changes to staff account.



Use Case Diagrams

Student

Appointment Subsystem

Create Appointment
Manage Appointment

O

/

N

Advisor



Use Case Diagrams

Advising Types Subsystem

Create Advising Types

Manage Advising Types

Advisor




Use Case Diagrams

Time Slots Subsystem




Use Case Diagrams

Advisor

User Account Subsystem

Login Account

Create User Type

Manage User Type

Create Advisor Account

Manage Advisor Account

Create Staff Account

Manage Staff Account

Admin



lteration-1 Use Cases

UC 01: Schedule / Create Appointment



UC 1: Schedule/Create
Appointment



High Level Use Case

TUCBW the student clicks available time slot from
the advising calendar.

TUCEW the student sees the confirmation page with
appointment details.



Expanded Use Case

Actor: Student System: MavAppoint
0. The application shows the calendar view after
UC1: Schedule Appointment student has logged in.

1. TUCBW the student selects available time slot

from the advising calendar. 2.The system asks student to select advising tasks.
3.The student selects advising tasks and clicks 4. The system displays a message confirming the
submit. appointment is made. *

5. TUCEW the student sees the confirmation page
with appointment details. * Is a non-trivial step.




Scenario

3 The student selects Confirm button to confirm the appointment.
4.1 The UC Controller creates a message
4.2 The UC Controller creates a JavaBean with the form information
4.3 The UC Controller checks that all required information is present
4.4 The UC Controller adds a time slot record with the Database Manager.
4.4.1 The Database Manager adds studentid to time slot record.
4.4.2 The Database Manager creates an appointment for the Advisor.
4.5 DB Manager returns success if the time slot is added.
4.6 If the document is successfully added,
4.6.1 The UC emails the advisor a notification with the appointment information
4. 6.2 The UC Controll er wriddyyy yi Alphp:omma meontmsmp.de f or mi
4.7 Else,
4. 7.1 The UC control |l er-ddwry ytye sh i:Amprmp ou ma bmeentt o olre mand d e d .
4.8 The system displays a message confirming the appointment is made.



Scenario Table

Objects Acted

# Subject Subject Action [Other Data/Objects Upon
3. Students selects appointment confirm button
4.1. UC controller creates message
4.2. UC controller creates form information JavaBean
4.3. UC controller  |checks information
4.4, UC controller adds time slot DB manager
44.1 DB manager adds student Id Time slot record
4.4.2 DB manager creates appointment Advisor
4.5. DB manager returns msg Time slot
If the document
is successfully
4.6. added,
4.6.1. UC controller emails notify advisor
4.6.2. UC controller  |writes "Appointment made for mm-dd-yyyy hh:mm msg
4.7, Else,
4.7.1. UC controller  |writes "Appointment made for mm-dd-yyyy hh:mm unable to be added |msg
4.8. System displays msg Student




<<Controller>>

:Schedule :Schedule ; X , <<Expert>> ndge>>
Appointment Appointment RARROInkneNN msg:Msg ‘Database Database
GUI Controller Manager
|2
................... D R
<<Enters 2
- Mdetails and clicks | |a:=getinput(form:string)
: Submit>> Msg
create(a:appoinﬂnenTL
Success:=save(a:appointment) - _|_
msg("Appointment is created succesfully? save(a:appointment)
: esel| | T N e
msg("Unable to creale Appointment”) B
§4 ST . M | |




UNIVERSITY OF

‘?L(‘ TEXAS |[COLLEGE of ENGINEERING

ARLINGTON

month = week day September 2014 today < >

Sun Mon Tue Wed Thu Fri Sat

-
1]
[
=
n
[a2]

7 8 9 1

9a Advising
9:05a Advising
9:10a Advising

o

-

-
-
3]
-
L]

o:15a Adising
9:25a Advising 9:20a Advising




lteration-2 Use Cases

UC 02: Manage Appointment
UC 03: Allocate Time Slots

UC 04: Manage Time Slot



UC 2: Manage
Appointment



High Level Use Case

TUCBW the user clicks on the existing appointment
from the calendar.

TUCEW the user sees a message that the
appointment has been updated or deleted.



Expanded Use Case

Actor: Student, Advisor

System: MavAppoint

UC2: Manage Appointment

0. The system dispays the calendar view of all existing and
available appointments

1. TUCBW the user clicks the existing appointment
from the calendar.

2. The system displays the update form with the scheduled
appointment info filled out.

3. The user fills out the form and clicks submit.

4. The system asks confirmation of update.

5. The user clicks on confirmation button for update
appointment.

6. The system displays the appointments with the updated
appointment.*

7. TUCEW the user sees a message that the
appointment has been updated or deleted.

*Non-trivial step




Scenario

5. The user clicks on the confirmation button for cancellation of appointment.
6.1. The Manage Appointment GUI asks the Manage Appointment Controller to update/delete the
Appointment information.
6.2. The Manage Appointment Controller retrieves the form information.
6.3. The Manage Appointment Controller creates a blank msg.
6.4. The Manage Appointment Controller asks the Database Manager to update/delete the Appointment
information using the form information.
6.4.1. The Database Manager updates/deletes the Appointment.
6.4.2. The Database Manager returns a boolean value representing success or failure.
6.5. If the update/delete was successful,
6.5.1 Manage Appointment Controller writes AApp
6.6. Else,
6.6.1 Manage Appointment Controller writes fAUna
6.7. Manage Appointment Controller returns msg to Manage Appointment GUI.
6.8. The Manage Appointment GUI displays the msg.



Scenario Table

# Subject Subject Action |Other Data/Objects Object Acted Upon
Advisor clicks confirmation button
Manage Appointment
6.1. Manage Appointment GUI asks appointment information Controller
6.2. Manage Appointment Controller retrieves form information
6.3. Manage Appointment Controller creates blank msg
6.4. Manage Appointment Controller asks appointment information Database Manage
6.4.1 Database Manager updates/delete | Appointment
6.4.2 Database Manager returns boolean value
6.5. if successful

"Appointment update

6.5.1. Manage Appointment Controller writes successful msg

6.6. else,

6.6.1 Manage Appointment Controller writes "Unable to update Appointment

6.7. Manage Appointment Controller returns msg Manage Appointment GUI

6.8. Manage Appointment GUI displays msg




Sequence Diagram

z<Conirollers= £
) <<Experss
Manage Manage a:Appointment msg:Msg ‘Datahase <<Brdge,
Appointment GUI Appointment ' Flyweight
Controller Manager Eacto r'g,.':=:=
1
................... = - Database
=<Enters . . -
details and clicks a:=getpost():Msg
Submit==
getia:appointment) |'
j et(a:appointment) L
update or delete
(a:appointment)
updale or delete(a:appoiniment) -
» update or delefe
msg("Appointment upgate successul®) (a:appointment)
elsel| | ]
: msg({"Unable to Yypdate/delete -
<} iisges . Appﬂlntn}enf‘]
1




N
Y I

UNIVERSITY QF

TEXAS COLLEGE ofF ENGINEERING

ARLINGTON

Manage Appointments

Advisor Name

Advisor 1

Advisor 1

Advisor 1

Appointment Date
10/31/2014
10/31/2014

10/31/2014

Start Time

9:00 AM

9:15 AM

10:00 AM

End Time

9:15 AM

9:40 AM

10:45 AM

Advising Type
Drop Class
New Student

Prospective Student

Advising Email Action
student@mavs.uta.edu

student2@mavs.uta.edu

student4@mavs.uta.edu



UC 3: Allocate Time
Slots



High Level Use Case

TUCBW the user clicks the day from the calendar
view.

TUCEW the user sees the available timeslots on
the calendar.



Expanded Use case

Actor: Advisor

System: MavAppoint

UCO03: Allocate Time Slots

0. The system displays the Customize
menu after Advisor has clicked the
Customize link.

1.TUCBW the advisor clicks the day from the
calendar view.

2.The system displays the Add Time Slot
form.

3. The advisor fills out the form and clicks
Submit.

*4. The system adds the time slot to the
Availability calendar.

5. TUCEW the advisor sees the available time
slots on the calendar.

* Is a non-trivial step.




Scenario

3. The advisor fills out the form and clicks Submit.

4.1 The Allocate Time Slot Controller creates a blank msg.

4.2 The Allocate Time Slot Controller creates a JavaBean with the form information.

4.3. The Allocate Time Slot Controller adds a time slot record with the Database Manager.
4.3.1. DB Manager returns success if the time slot is added.

4.4. If the document was successfully added,

4. 4. 1. The All ocate Time Slot Controller write
4.5. Else,

4.5.1. The All ocate Ti me SI-ddty ycyoyn thrhalmnme ru nvarbil tee

to msg.

4.6. The Allocate Time Slot controller returns msg to Allocate Time Slot GUI.
4.7. The Allocate Time GUI displays the message to the Student.



Scenario Table

# Subject Subject Action Other Data/Objects Object Acted Upon
3. Advisor fills Form
The allocate time slot
4.1. controller creates msg
The allocate time slot
4.2. controller creates javabean
The allocate time slot
4.3. controller Adds Time slot record Database Manager
4.3.1. The Database Manger returns success
If the document is
4.4. successfully added
The allocate time slot
44.1. controller writes ATi me sl ot succes|msg
4.5. else,
The allocate time slot ATi me sddgyyy hmmm
4.5.1. controller writes unable to msg
The allocate time slot allocate time slot
4.6. controller returns msg GUI
4.7. The allocate time slot GUI |displays msg Student




Sequence Diagram

<<Expert, <<Commandz:=
. . <<Controllers> Bridge== UpdateTime
‘Allocate Time ‘Mllocate Time Slot juJavaBeans msg:Msg Database RDB Impl :
Slot GUI Controller Manager
T E
................... [= X '
<<Fills forms z '
and clicks j=getinput{form:string):
Submit== Msg :
create[jﬂavaaeansf[
hdd(timeslot)boolean " L
if(add==true) i j create(date:String,start:String, end:String) ,
msg("Time slot succdssiully added.) * additimeslot):boolea execute()baolean N
ese] | A
: msg(Time slot mm-fd-yyyy hhmm  ~
i“-’ﬂ - {{Msg:::: """ N unable to be pdded.”) |




UNIVERSITY OF

TEXAS COLLEGE of ENGINEERING

ARLINGTON

N
Y I

Allocate Time Slot

Start Time:

09:00 AM

End Time:

02:00 PM

Date:

10/31/2014

Weekly repeat duration:

3



UC 4. Manage Time
Slots



High Level Use Case

TUCBW the advisor clicks the existing time slot displayed
on Calendar View.

TUCEW the user sees the confirmation message.



Expanded Use case

Actor: Advisor System: MavAppoint

UC4: Manage Time Slot 0. The System displays the Calendar view

1. TUCBW the advisor clicks the existing 2. The System displays the Time Availability
time slot displayed on Calendar View form to update/delete

3. The advisor fills out the update/delete 4. The System asks for confirmation to update/
Time Availability form and clicks Submit. delete the Time Availability form.

6. The system displays a "Timeslot
5. The advisor clicks the Confirm button. updated/deleted" confirmation message.*

7. TUCEW the advisor sees the confirmation
message. *Non-trivial step




Scenario

5.The advisor clicks the confirm button.
6.1. The Manage TimeSlot GUI asks the Manage TimeSlot Controller to update/delete the TimeSlot information.
6.2. The Manage TimeSlot Controller retrieves the form information.
6.3. The Manage TimeSlot Controller creates a blank msg
6.4. The Manage TimeSlot Controller asks the Database Manager to update/delete the TimeSlot information
using the form information.
6.4.1. The Database Manager updates/deletes the TimeSilot.
6.4.2. The Database Manager returns a boolean value representing success or failure.
6.5. if the update/delete was successful,

6. 5. 1. Manage TimeSIlIl ot Controller writes ATi meSI
6.6. else,
6. 6.1 Manage TimeSIlot Controller writes AUnabl e

6.7. Manage TimeSlot Controller returns msg to Manage TimeSlot GUI.
6.8. The Manage TimeSlot GUI displays the msg.



Scenario Table

# Subject Subject Action  |Other Data/Objects Objects Acted Upon
5. Advisor presses Confirmation Button
6.1. Manage Timeslot GUI asks TimeSlot Information |Manage TimeSlot Controller
6.2. Manage Timeslot Controller |retrieves form information
6.3. Manage Timeslot Controller |creates blank msg
6.4. Manage Timeslot Controller |asks TimeSlot Information |Database Manager
6.4.1. Database Manager updates/deletes |TimeSlot
6.4.2. Database Manager returns boolean value
6.5. if successful,
"TimeSlot update
6.5.1. Manage Timeslot Controller |writes Successful msg
6.6. else,
"Unable to update
6.6.1. Manage Timeslot Controller |writes TimeSlot
6.7. Manage Timeslot Controller |returns msg Manage Timeslot GUI
6.8. Manage Timeslot GUI displays msg




Sequence Diagram

al

<<Controller>> : <<Experts>
‘ManageTimeSlot ‘ManageTimeSlot =hmasiol msg:Msg Databiss .
GUI Controller Information M <<Bridge,
anager. Command>>
32 Database
.................. D _
< <Clicks ; z >
: Confirmation E=getpost()}Msg
: button>>
: get(tumeslot > 2
: Information) =
: get{ttimesiot
: Information)
: update or delete
: (ttimeslot)
upHate or delete(ttimegiot) ”
> update or delete {
msg("TimeSlot updatef/delete successful” (ttimeslot) "
: ISl F; o S o
§<} .................... msg("Unable to updatT/deIete TimeSlot”)
: <<Msg>> T I I

Continue...



Continued from previous...

aetFlyweight(data:String, tima:String)

TimeSiotComponent

<<Flyweight Factory==
‘TimeSlotFactory

<<Composites=
:CompositeTimeSlot

<<Composite==
‘Primitive TimeSlof

ceate() LD

creafe()

|_'!_F_|'



lteration-3 Use Cases

UC 10: Create Advisor Account
UC 11: Log In

UC 12: Log Out



UC 10: Create
Advisor Account



High Level Use Case

Actor: Admin
TUCBW the Admin clicks the create account button.

TUCEW the Admin sees the successful message.



Expanded Use Case

Actor: Admin

System: MavAppoint

UCO010: Create Advisor account

0. The system displays the home page with the admin
logged in.

1. TUCBW the admin clicks the create
account button.

2.The system displays the create account form.

Submit.

3. The admin fills out the form and clicks

*4. The system displays "Account successfully
created." message.

message.

5. TUCEW the admin sees the successful

* Is a non-trivial step.




Scenario

3. The admin fills out the form and clicks Submit.

4.1. The CreateAdvisor GUI creates an advisor account with the Create Advisor controller using
CreateAdvisor form.
4.2. The CreateAdvisor controller creates a blank msg.
4.3. The CreateAdvisor controller asks the Database Manager to create an advisor using the form
information.

4.3.1. The Database Manager creates a new advisor account.

4.3.2.The Database Manager returns a boolean value representing success or failure. The

4.4, If creating a new advisor account was successful,

4.4.1. The CreateAdvisor controller writes
4.5. Else,

4.5.1. The CreateAdvisor controller writes
4.6. The CreateAdvisor controller returns msg to CreateAdvisor GUI.

4.7 The CreateAdvisor GUI displays the msg.



Scenario Table

# Subject Subject Action |Other data/objects Objects Acted Upon
3. admin fills form
CreateAdvisror
4.1. CreateAdvisor GUI creates account controller
4.2. CreateAdvisor controller creates msg
4.3. CreateAdvisor controller asks Database Manager
4.3.1. Datebase Manager creates account
CreateAdvisor
4.3.2. Database Manager returns success/fail Controller
4.4, If creating a new advisor account was successful,
"Account Successfully
44.1. CreateAdvisor controller writes created"”
4.5. Else,
"Unable to create
45.1. CreateAdvisor controller writes appointment”
4.6. CreateAdvisor controller returns msg CreateAdvisor GUI
4.7. CreateAdvisor GUI displays




Sequence Diagram

, <<Controller== fform <<Experts>
‘CreateAdvisor ‘CreateAdvisor information msg:Msg Database RDB
GUI Coniroller Manager Impl
1
................... [> R
{{F'”;E{rsm and f:=createadvisor
: ) (form:string):
: Submit== Msg
creates{msg:Msg) F|_:|
creates(fform
: information) -
CreateAdvisor{fiorm
: nformation)boolean
: save(fform 'L
: -‘=|_ information)boolean
: msq("Account succesfully created")
: esell | S
: msg("Unable to créate Account”) '|_:|
T g




Sequence Diagram
Visitor Applied

CreateAdvisor

== ontrollers:=
CreateAdvisor
Controller

=<\Wisitors=
v:Create AdvisorVisitor

<<\isilors:
user:LoginUser

‘Data

G
1
................... E;_-_,
==<Fills Form and
- clicks
: Submit==
T g

f:=createadvisor
(form:string):
Msg

1

create()

accept{v.form)

¥
M

1

check{uzer form]
i

-

result == save(ffor

z=Expert==

Manager

hase

nl: boolean

—I save(fform): boolea

RDE
Impl

|

of
i

if (result == true}

sethMsg("Account
icreated successfull

setMsg("Unable tof

create Account"}

L
-

Mesg:=getMszal}:string

I




. MavAppoint \ &, Sequence diagrams - Goc X . Create Advisor Account - X ¢ Create Advisor Account - X ¢ Iteration-3 - Google Slides x \ “ Sign in to Office 365

€« c

MavAppoint

Create New Advisor:

Email Address 4

Display Name




UC 11: Log In



High Level Use Case
Actor: User
TUCBW the User clicks the Log In button

TUCEW the User sees the homepage with
calendar view.



Expanded Use case

Actor: User

System: MavAppoint

UCO011: Log In

0. The system displays the home page.

1. TUCBW the admin clicks the Log In

button.

2.The system displays Log In form.

3. The advisor enters username and
password and then clicks Submit button.

*4. The system displays the login successful
message on home page.

5. TUCEW the User sees the home page

logged in.

* is a non-trivial step.




Scenario

3. The User provides username and password then clicks Submit.
4.1. The Log In GUI gets username and passwords and sends it to Log In controller.
4.2. The Log In controller creates the blank msg.
4.3. The Logln controller asks Database Manager to verify the username and password.
4.4. If the username and password match,
4.4.1 DB manager requests Login Factory to create LoginUser object.
4.4.1.1 The login factory creates LoginUser object and returns it to DB manager.
4.4.2 DB Manager returns LoginUser object back to Login Controller.
4. 4.3 The Log In controller writes A Logln
4.5. Else,
4.5.1 The Log In controller writes @A Unabl e
4.6. Log In controller returns msg to GUI and redirects back to the home page.
4.7. The GUI diplays the msg and home page.



Scenario Table

# Subject Subject Action Other data/objects Objects Acted Upon
3. advisor provides username, password

4.1. Login GUI gets, sends username, password Logln Controller
4.2. Logln controller creates msg

4.3. Logln controller asks username, password Database Manager
4.4. If the username and password match,

4.4.1. DB manager requests login user object Login Factory
4.4.1.1. |Login Factory creates login user object Database manager
4.4.2. DB manager returns login user object Login controller
4.4.3. Logln controller writes "Logln successful" msg

4.5. Else,

4.5.1. Logln controller writes "Unable to Logln message" msg

4.6. Logln controller returns msg GUI

4.7. GUI diplays msg




Sequence Diagram

Logln GUI

<=Enters username,
password
and
clicks
Submitss

1

==Msg=>

getlogin

{uid.password):

Msq

Contraller= . ==Expert=> 1 i
= ‘Logln g msg:Msg Database ROE .Lugtl}rj Uts or
: objec
Contraller Manager Impl l
n:reates{msg:lﬁ.ﬂsgr[}
verify(uid password) ’L
LoginUser | verity(uid, »
password)
LoginUser —CI‘EEW [:|
msg(Lagin F|_i|
succesfully")
felsel| | - ]
msg{"Unable io ©
Login msg”)
I







